If you're enjoying our video course, help spread the word on Twitter.

- GMAT Video Course
- Video Course Overview - READ FIRST
- General GMAT Strategies - 7 videos (all free)
- Data Sufficiency - 16 videos (all free)
- Arithmetic - 38 videos (some free)
- Powers and Roots - 36 videos (some free)
- Algebra and Equation Solving - 73 videos (some free)
- Word Problems - 48 videos (some free)
- Geometry - 42 videos (some free)
- Integer Properties - 38 videos (some free)
- Statistics - 20 videos (some free)
- Counting - 27 videos (some free)
- Probability - 23 videos (some free)
- Analytical Writing Assessment - 5 videos (all free)
- Reading Comprehension - 10 videos (all free)
- Critical Reasoning - 38 videos (some free)
- Sentence Correction - 70 videos (some free)
- Integrated Reasoning - 17 videos (some free)

- Learning Guide
- Extra Resources
- Guarantees
- About
- Get Started

## Comment on

Absolute Value Equations## Hi, Just a quick question.

-(negative) equation not considered part of the original equation? I ask because i'm confused. If{x}=3x-4 or -3x-4;

my first solution of 2 i plugged into 3x-4. my second solution of 1 i plugged into -3x-4 because I thought the solution of 1 was derived from that "original equation of -3x-4. So for future reference, when I am tackling absolute value questions, I am always plugging the solutions into the first equation only?

thanks

## You must plug the solutions

You must plug the solutions into the ORIGINAL equation (not the derived equation). Otherwise, you are just confirming what you already solved.

That is, from the equation |x| = 3x - 4, you derived two equations: x = 3x - 4, and x = -(3x - 4)

When you solved x = 3x - 4, and got x = 2, you got that solution by solving the DERIVED equation (x = 3x - 4), so it doesn't help to then plug that solution into the (derived) equation that you just used to determine that solution.

If you follow that strategy, you will never find any extraneous roots.

Our goal is to solve the original equation, so we must use that equation to check our possible solutions.

## If y + |y| = 0 which of the

A. y > 0

B. y >= 0

C. y < 0

D. y <= 0

E. y = 0

Can we chose y as + and - ? I chose y as 1 and | y | as -1 so I add 1 + (-1) = 0 . I don't understand why the answer is d .

## "I chose y as 1 and |y| as -1

"I chose y as 1 and |y| as -1"

If y = 1, then |y| = |1| = 1 (not -1).

NOTE: The absolute value of ANY value is always greater than or equal to 0. In other words, the absolute value of a number CANNOT be negative.

Let's solve the question by testing values.

Try y = 2. Plug into equation to get: 2 + |2| = 0

Evaluate: 4 = 0

NO GOOD.

So, y cannot equal 2.

ELIMINATE A and B

Try y = 0. Plug into equation to get: 0 + |0| = 0

Evaluate: 0 = 0

WORKS

So, y can equal 0.

ELIMINATE C

Try y = -1. Plug into equation to get: -1 + |-1| = 0

Evaluate: 0 = 0

WORKS!

ELIMINATE E

By the process of elimination, the correct answer is D

## Add a comment