If you're enjoying our video course, help spread the word on Twitter.

- GMAT Video Course
- Video Course Overview - READ FIRST
- General GMAT Strategies - 7 videos (all free)
- Data Sufficiency - 16 videos (all free)
- Arithmetic - 38 videos (some free)
- Powers and Roots - 36 videos (some free)
- Algebra and Equation Solving - 73 videos (some free)
- Word Problems - 48 videos (some free)
- Geometry - 42 videos (some free)
- Integer Properties - 38 videos (some free)
- Statistics - 20 videos (some free)
- Counting - 27 videos (some free)
- Probability - 23 videos (some free)
- Analytical Writing Assessment - 5 videos (all free)
- Reading Comprehension - 10 videos (all free)
- Critical Reasoning - 38 videos (some free)
- Sentence Correction - 70 videos (some free)
- Integrated Reasoning - 17 videos (some free)

- Learning Guide
- Extra Resources
- Guarantees
- About
- Get Started

## Comment on

Handling Restrictions## Why do you assume that

## The key word here is "arrange

The key word here is "arrange." So, we're taking 5 things (letters) and determining the number of ways to move (arrange) those 5 letters around.

## Hi,

I sometimes get a bit confused between mnp rule & !factorial principle. Can you please throw light on the similarities and distinction between them?

## Can you please elaborate. I'm

Can you please elaborate. I'm not sure what you mean by the "mnp rule" and the "factorial principle."

## Fundamental counting

## We can use either approach,

We can use either approach, since they both yield the same results.

With the Fundamental Counting Principle, we can see WHY n unique objects can be arranged in n! ways.

Or we can just use the formula (n unique objects can be arranged in n! ways)

## why 5*5*4*5*5 is wrong

## The key word here is "arrange

The key word here is "arrange." So, we're taking 5 things (letters) and determining the number of ways to move (arrange) those 5 letters around (with a restriction).

## So arrange implies no

Request you to also explain why have we ruled out repetition in the following question: If all of the telephone extensions in a certain company must be even numbers, and if each of the extensions uses all four of the digits 1, 2, 3, and 6, what is the greatest number of four-digit extensions that the company can have?

## Yes, in that case the word

Yes, in that case the word "arrange" implies no repetition.

In your second question, the keyword is "ALL" as in, "...each of the extensions uses ALL four of the digits 1, 2, 3, and 6..."

So, the digits 1, 2, 3 and 6 must ALL be used in the four-digit extension. This means there cannot be any repetition.

## Add a comment