If you're enjoying my video course, help spread the word on Twitter.

- Video Course
- Video Course Overview - READ FIRST
- General GMAT Strategies - 7 videos (all free)
- Data Sufficiency - 16 videos (all free)
- Arithmetic - 38 videos (some free)
- Powers and Roots - 36 videos (some free)
- Algebra and Equation Solving - 73 videos (some free)
- Word Problems - 48 videos (some free)
- Geometry - 42 videos (some free)
- Integer Properties - 38 videos (some free)
- Statistics - 20 videos (some free)
- Counting - 27 videos (some free)
- Probability - 23 videos (some free)
- Analytical Writing Assessment - 5 videos (all free)
- Reading Comprehension - 10 videos (all free)
- Critical Reasoning - 38 videos (some free)
- Sentence Correction - 70 videos (some free)
- Integrated Reasoning - 17 videos (some free)

- Study Guide
- Your Instructor
- Office Hours
- Extras
- Prices

## Comment on

Introduction to Exponents## Hey Brent,

regarding this Q with exponents and inequalities:

https://gmatclub.com/forum/gmat-diagnostic-test-question-79337.html

In the two statements, since I don´t know the sign I can´t simply divide or multiply. But can I do si if I consider the case of x being positive and x being neg.? It worked out for me on this one.

To be more specific:

Stmt 1: 1/x > -1

case 1 (x pos): -1<x

case 2 (x neg): 1<x

thus, insuff.

Stmt 2: 1/x^5>1/x^3

case 1 (x pos): 1>x

case 2 (x neg.): 1>x

thus, suff.

Is that possible? or did it luckily work out with the specific set of numbers in that particular Q?

## Question link: https:/

Question link: https://gmatclub.com/forum/gmat-diagnostic-test-question-79337.html

Without seeing your full solution, it's hard to tell whether the steps you took are valid.

That is, for Statement 2 you write:

case 1 (x pos): 1 > x

case 2 (x neg.): 1 > x

These are correct conclusions (for each case), but how did you arrive at those conclusions?

Cheers,

Brent

## I assumed two cases for the

However, I just noticed that when doing that for stmt 2 (which actually yields an answer), I get for assuming x being neg. and pos. respectively two contradicting results. So I guess my approach is invalid?

## Sorry, but I'm still not 100%

Sorry, but I'm still not 100% clear on your solution.

For statement 2, are you multiplying both sides by x or x^3 or x^5?

In the meantime, Bunuel provides a nice solution here: https://gmatclub.com/forum/gmat-diagnostic-test-question-79337-20.html#p...

## Add a comment