If you're enjoying this GMAT video course, help spread the word on Twitter.

- Video Course
- Video Course Overview
- General GMAT Strategies - 7 videos (free)
- Data Sufficiency - 16 videos (free)
- Arithmetic - 38 videos
- Powers and Roots - 36 videos
- Algebra and Equation Solving - 73 videos
- Word Problems - 48 videos
- Geometry - 42 videos
- Integer Properties - 38 videos
- Statistics - 20 videos
- Counting - 27 videos
- Probability - 23 videos
- Analytical Writing Assessment - 5 videos (free)
- Reading Comprehension - 10 videos (free)
- Critical Reasoning - 38 videos
- Sentence Correction - 70 videos
- Integrated Reasoning - 17 videos

- Study Guide
- Blog
- Philosophy
- Office Hours
- Extras
- Prices

## Comment on

Even and Odd Integers## 0 is neither even nor odd.

## Zero is even.

Zero is even.

An integer is even if that integer is divisible by 2. An integer, n, is divisible by 2 if n = 2k, where k is an integer.

So, for example, 10 is even because 10 = (2)(5), and 5 is an integer.

Likewise, -22 is even because -22 = (2)(-11), and -11 is an integer.

Similarly, 0 is even because 0 = (2)(0), and 0 is an integer.

## zero is neither positive nor

## That's true

That's true

## appears this lesson (and the

## I don't have such a list.

I don't have such a list. However, the number of practice questions related to each topic is a good indication of the importance of that topic.

## Hi Brent,

Question: is it true that fractions and or decimals are not considered Odd or Even numbers?

One of the post answered by some user mentioned that a number like 1.3 cannot be Odd or Even because the addition of a zero at the end of the number (which does not change the value) makes it even divisible by "2" whereas 1.3 would be Odd. Maybe I am interpreting the information the wrong way or the user was wrong or failed to explain adequately. Let me know

Thank you

## Hi Bertyy,

Hi Bertyy,

The quick answer: for the GMAT, only INTEGERS are considered even or odd.

Allowing fractions and decimals to be even or odd kind of blows up some of our trusted rules. For example, if we consider 0.25 and 0.5 to be odd, then 0.25 + 0.25 = 0.5 means that ODD + ODD = ODD

Of course this isn't to say that there's no side branch of mathematics where they consider what happens when we include fractions and decimals in the realm of evens and odds. But, for the purposes of the GMAT, we only consider INTEGERS.

Cheers,

Brent

## I can deal with that. Not a

## https://gmatclub.com/forum

I don't understand why E is not the answer.

I simplified the equation to if a(b+1) is odd then which must be even. Accordingly, it's not enough for b only to be even:

If b is even + odd = odd. That's all well and good but what about a? If a is even then no matter what happens you're going to get even. So the answer choice of b is not adequate.

It should ensure that both a and b are odd. The only answer that does this is E,

If a + b^2 must be even then,

a = odd

b = odd

odd + odd = even

Have I lost the plot or has there been a mathematical anomaly here?

## Question link: https:/

Question link: https://gmatclub.com/forum/the-expression-ab-a-is-odd-when-the-a-and-b-a...

If (x)(y) = ODD, then we can be certain that x and y are both ODD.

In your approach, you noted that we can't make any conclusions about a, but we can.

If a(b+1) is ODD, then a is odd, and b+1 is odd.

Also, there's a problem when you made the following conclusion:

If a + b^2 must be even then,

a = odd

b = odd

If x + y = EVEN, then EITHER x and y are both ODD, OR x and y are both EVEN

Here's my full solution: https://gmatclub.com/forum/the-expression-ab-a-is-odd-when-the-a-and-b-a...

Does that help?

Cheers,

Brent

## I came across this on the

Is A + B + C = even or odd?

(1) A - C - B is even

Given the rule, EVEN +/- EVEN = EVEN and ODD +/- ODD = EVEN

I would have assumed that this is sufficient to prove that A - B - C is even.

What am I missing?

## Statement 1 WOULD be

Statement 1 WOULD be sufficient IF we were told that A, B and C are INTEGERS.

For example, if A = 3.2, B = 0.5 and C = 0.7, then A - B - C = 2, which is even.

However, A + B + C = 4.4 which is not even.

Cheers,

Brent

## https://gmatclub.com/forum

Hi Brent for this question, had we been asked "what is the value of Q"? Statement 2 would have sufficed right?

## Question link: https:/

Question link: https://gmatclub.com/forum/the-function-f-n-the-number-of-factors-of-n-i...

If the target question were "What is the value of q?", statement 2 should would still be insufficient.

Statement 2: q is less than p

Consider these two cases:

CASE A: q = 2 and p = 3.

So, pq = (2)(3) = 6

Since 6 has four positive factors (1,2,3,6), we have satisfied the condition that f(pq) = 4.

In this case, the answer to the NEW target question is: q = 2

CASE B: q = 1 and p = 6.

Once again, pq = 6, which means we have satisfied the condition that f(pq) = 4.

In this case, the answer to the NEW target question is: q = 1

Since we can't answer the NEW target question with certainty, statement 2 is insufficient.

Does that help?

Cheers,

Brent

## Hi Brent,

Could you please help me here?

https://gmatclub.com/forum/is-w-an-integer-218816.html

How is statement B sufficient? If I take w = 1.1 then 2w = 2.2 which is an even number but w is not an integer, and when I take w = 1 then 2w = 2. How can we conclude it be sufficient?

Thanks so much!

## Question link: https:/

Question link: https://gmatclub.com/forum/is-w-an-integer-218816.html

Be careful; 2.2 is not considered even.

An even number is any INTEGER that's divisible by 2.

Cheers,

Brent

## https://www.beatthegmat.com

I didn’t understand why A is the right answer and not D. In your solution for statement 2 being insufficient you have used the example of 4/3 but the answer, which is 1.3333 is not even an integer.

Could you please help me with this, thanks !

## Question link: https:/

Question link: https://gmatclub.com/forum/is-x-an-odd-integer-141763.html

Target question: Is x odd?

It is given that x is an INTEGER.

Statement 2 tells us that x/3 is NOT an even integer.

Let's see what happens if x = 3

We can choose x = 3, because 3 is an integer (and we're told that x is an integer)

In this case, x/3 = 3/3 = 1

Since 1 is NOT an even integer, we can see that x = 3 satisfies BOTH the given information AND statement 2.

Let's see what happens if x = 3

We can choose x = 3, because 3 is an integer (and we're told that x is an integer)

In this case, x/3 = 3/3 = 1

Since 1 is NOT an even integer, we can see that x = 3 satisfies BOTH the given information AND statement 2.

If x = 3, then the answer to the target question is "YES, x is odd"

Now let's see what happens if 4 = 3

We can choose x = 4, because 4 is an integer (and we're told that x is an integer)

In this case, x/3 = 4/3 = 1.3333333.....

Is 1.3333333..... an even integer? (the answer to this question is either yes or no)

No, 1.3333333.....in NOT an even integer.

Since 1.3333333..... is NOT an even integer, we can see that x = 4 satisfies BOTH the given information AND statement 2.

If x = 4, then the answer to the target question is "NO, x is NOT odd"

Does that help?

Cheers, Brent

## https://gmatclub.com/forum/if

IMPORTANT: *If p and n are integers, then p-n and p+n will also be integers.

Also, if p+n is ODD then p-n must also be ODD

Likewise, if p+n is EVEN then p-n must also be EVEN*

I thought like this:

As RHS is 28,so LHS Will (both even) or (one even)(one odd).

Would you please correct me in this regards?

Thanks.

## Question link: https:/

Question link: https://gmatclub.com/forum/if-n-and-p-are-positive-integers-what-is-the-...

That's a good idea, but the second case you suggest, "(one even)(one odd)" isn't possible for this given question.

Here are some properties we need to know about odds and evens:

#1. ODD +/- ODD = EVEN

#2. ODD +/- EVEN = ODD

#3. EVEN +/- EVEN = EVEN

Statement 2 tells us that (p - n)(p + n) = 28

If (p + n) is ODD, then Property #2, tells us that one of the values (p or n) is even, and the other value is odd.

If one value is even and the other value is odd, then it must also be true that (p - n) is ODD (according to Property #2).

So it's impossible to have a situation where (p + n) is ODD, yet (p + n) is EVEN.

Does that help?

## The function f(n) = the

(1) p + q is an odd integer

(2) q is less than p

Statement 2: q is less than p

From the given information, we know that p and q are both prime numbers.

Didn't understand this part. How Both are primes?

## Question link: https:/

Question link: https://gmatclub.com/forum/the-function-f-n-the-number-of-factors-of-n-i...

Good question! I have no idea why I mentioned that in my solution.

It COULD be the case that p and q are both prime numbers.

For example, if q = 2 and p = 7, then pq = 14, and the divisors of 14 are: 2, 7, 1 and 14 (4 divisors)

HOWEVER, it could also be the case that p and q are NOT both prime numbers.

For example, if q = 2 and p = 4, then pq = 8, and the divisors of 8 are: 1, 2, 4, and 8 (4 divisors)

I have since removed that line from my solution.

Thanks for the heads up!

## Hi Brent,

Pls explain this

If x, y, and z are positive numbers, is x - y < z?

(1) x - y < z

(2) xy < z^2

## Here's my full solution:

Here's my full solution: https://gmatclub.com/forum/if-x-y-and-z-are-positive-numbers-is-x-y-z-30...

Cheers,

Brent

PS: In the future, to speed things up, you can just paste the link to the question.

## Hi Brent,

If the sum of three integers is even, is the product of the three integers a multiple of 4 ?

(1) All three integers are equal.

(2) All three integers are even.

Can we consider 0 in this case?

## Question link: https:/

Question link: https://gmatclub.com/forum/if-the-sum-of-three-integers-is-even-is-the-p...

Yes, 0 is a multiple of 4, AND 0 is also even.

## Hi Brent,

Is the integer n even?

(1) n – 5 is an odd integer.

(2) n/5 is an even integer.

Pls tell me whether I comprehend in the right direction for the statement 2 i.e. Even/Odd yields an integer it must be an even integer hence N is even. Am I right?

## Question link: https:/

Question link: https://gmatclub.com/forum/is-the-integer-n-even-1-n-5-is-an-odd-integer...

That's correct. Here's the property:

If P is an EVEN integer, Q is an ODD integer, and P/Q = integer N, then we can conclude that N is EVEN.

Cheers, Brent

## Hi Brent ,

What should be my approach to this problem

https://gmatclub.com/forum/if-u-is-an-odd-number-and-v-and-w-are-different-integers-which-of-the-223767.html

## Question link: https:/

Question link: https://gmatclub.com/forum/if-u-is-an-odd-number-and-v-and-w-are-differe...

For this question, I'd probably plug in some values and eliminate answer choices.

Here's a solution that uses this approach: https://gmatclub.com/forum/if-u-is-an-odd-number-and-v-and-w-are-differe...

## Hi Brent,

https://gmatclub.com/forum/is-w-an-integer-218816.html

Could you please explain why the answer is B, given that even/even = non-integer, even or odd?

## Question link: https:/

Question link: https://gmatclub.com/forum/is-w-an-integer-218816.html

It would be better if the statements used "integer" instead of "number" (official GMAT questions involving evens and odd always use the term "integer")

The idea here is that only integers are considered even or odd.

So statement 1 is telling us that 2w is an even integer.

There's a property that says: All even integers can be expressed as 2k, where k is an integer.

So, if 2w is an even integer, we can say: 2w = 2k (for some integer k)

Divide both sides by 2 to get: w = k (for some integer k)

Does that help?

## Thanks, that makes a lot more